

A FRAMEWORK FOR ASSESSING WATER USE SUSTAINABILITY IN RIVER BASINS

Carter Borden, Peter Goodwin University of Idaho, Dept. of Civil Engineering HP 3 Meeting, Delhi. – February 4, 2015

Using Data to Make a Decision

IWRM Definition

"a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital eco-systems"

Source: GWP, 2004

Water Influence Social

Hydrology

Ecology

Economy

Sustainability Assessments

- Multi-stakeholder perspectives
- Multi-disciplinary: ecology, economic, social
 - Systems operate on different spatiotemporal scales
 - Complex interactions
 - Inherent socio-economic and ecologic capacities
- Intra- and inter-generational linkages
- Support Adaptive Management
- Uncertain future: moving target
- Knowledge and resources limited

RBAF Objectives

- Participatory setting
- Systematic checklist in formulating conceptual model
- Positions the environment
- Organize analysis results of the SC
- Supports IWRM
- Communication tool
- Flexible/transferrable

	Sections								
Habitat	1	2	3	4					
River									
Floodplains									
Snowpack									
Wetlands									
Reservoir									
	Section 1								
Riverine	ors	tion rs	nt	tion s					
Relevant	c Indicat	t Descrip Indicatc	f Releval egories	t Descrip ndicator					
5.00	rologi	mpact evant	pact o	mpac ¹ :vant l					
EGS	Нуd	EGS I & Rel	Ш Н	HWB I & Rele					
Floodplain									
	cors	tion	nt	ition s					

<u>Driver</u> Templates

- Climate
- Demand
- Supply
- Infrastructure
- Landuse
- Economic
- Ecological
- Societal Preference
- Institutional

<u>Baseline</u>

Unaltered System

Current

<u>Scenario 1</u> Population/ Industrial Increase Short-Term

<u>Scenario 2</u> Population/ Industrial Increase Long-Term

<u>Scenario 3</u>

Climate Change

Long-Term

RBAF-CT Products

SAU - Sau Cabilly	Section 4			EGS	Trend	Ы		ł	нwв	Tren	d
	Habitat	EGS Categories	В	S1	S 2	53		в	S1	S 2	53
	Riverine		-	\$	\$	\mathbf{V}	5,X	-	7	↑	\mathbf{V}
	Provisioning	Freshwater Consumption, Production	-	7	↑	\downarrow	5,X	-	7	↑	\downarrow
	Cultural	Aesthetic, Recreation	-	\uparrow	\leftrightarrow	\downarrow	Х	-	\leftrightarrow	\leftrightarrow	\downarrow
	Supporting	Hydrologic& Nutrient Cycle, Habitat, Biodiversity		\$	\$	\downarrow	5,X	-	\leftrightarrow	\leftrightarrow	\downarrow
	Floodplain		-	\$	\$	↓	5,X	-	\$	\$	↓
	Provisioning	Freshwater Consumption, Production	_	\$	\$	\downarrow	5,X	-	\$	\$	\downarrow
4	Regulating	Water Regulation, Storm Protection	-	\leftrightarrow	\leftrightarrow	\downarrow	5,X	-	\leftrightarrow	\leftrightarrow	\downarrow
		gy									
		Hydrolo			Ecology		Economic		Social	000101	
	Pressu	Ire Hydrolo			Ecology		Economic		Social	000101	
	Pressu State	Ire Ire		n	Ecology	Ca	Economic	rs	Social		

RBAF-AI

Filters

Case Study: Lemhi Basin

Photos by Taylor Dixon, IDWR

Leadore, ID

44°43 11.18" N 113°08'49.00" W elev 7889 ft

Google

RBAF-CT: LRB

LRB Indicators: Irrigation

- Pressure:
 - Change water demand
- State
 - Water flows
 - Water delivery
 - Irrigated area
 - Consumptive use

• Impacts

- Reliability-delivery,
- River flow: indices of alteration

- Pressure:
 - Irrigation change
 - Subsidies
- **State** – Cro – Irrig – Ne

ш

- Crop production
 - Irrigated area
- Net Income
- Recreation dollars
- Impacts
 - Trend in net revenues agriculture, land under production
 - Trend in Recreation dollars

Hydrologic

LRB Indicators: Irrigation

- Pressure:
 - None
- State

Ecologic

- Species Habitat
 - Steelhead
 - Chinook salmon
 - Bull trout
- Connectivity
- Impacts
 - Habitat quality
 - Change in # of migration barriers

- Pressure:
 - None
- State
 - Water distribution
 - Personal consumption
 - Employment
- Per • Em • Em
 - Water borne diseases
 - Access to drinking water
 - Household income

River BASIN Model

- 65 Catchments
 - NAM inflows
- 322 Water users
- Daily time step
- Calibrated WY 2008 2012
- Simulation period:
 Oct 1, 1999-Sep 30, 2012
- Indicators: Reliability of water delivery, quantum of water delivered per zone

Lemhi: Results

LRB Summary

- Areas: Active 2, 4, Altered 3, 5
- Ecosystems: river, floodplain, wetland creation lake
- **EGS provided**: freshwater consumption, food, water regulation, recreation, habitat
- **HWB**: Ability to make a living, recreation
- Indicators: Pressures, State, Impact
- Analysis: Comparison between alternatives by the S€

RBAF-CT: Upper Bhima Basin

RBAF-Conclusions

- ✓ Formal framework for developing conceptual models of river basins
- Framework for integrating discipline specific models
- Evaluating alternative futures across different river basin

carterbwater@gmail.com

